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Abstract
The localization of the centre-of-mass (CM) of a two-body electromagnetic/
gravitational system in the post-Newtonian approximation is shown to depend,
in general, on the internal configuration of the system via the corresponding
Newtonian Runge–Lenz vector. The requirement that the CM should not
depend on the internal configuration then uniquely determines the CM
coordinate in terms of the Runge–Lenz vector. A similar result is found
for fully relativistic non-interacting particles. We conclude that consideration
of the CM of relativistic systems should involve the Runge–Lenz symmetry
explicitly, as an essential part of the internal symmetries of the system.

PACS numbers: 03.30.+p, 03.50.−z, 04.25.Nx, 45.50.−j

1. Introduction

Seeking for a proper definition of the centre-of-mass (CM) of extended or composite relativistic
systems is an essential part of the effort to separate the internal dynamics of such systems from
their global motion. From the beginning [1] it was clear that various and different definitions
are possible, and that the relativistic CM may be defined either as a 4-vector in Minkowsky
spacetime or as a 3-vector on spacelike hyperplanes; that even as a 4-vector it may be either
manifestly covariant (observer-independent) or not; and that it may be either a canonical
coordinate (with vanishing commutation relations or Poisson brackets (PB) between all its
components) or not (see [2] for a recent publication with an extensive bibliography covering
the subject’s history).

In the following we concentrate on the manifestly covariant CM coordinate for non-
quantum systems. If the system is Lorentz–Poincaré symmetric with conserved total linear
momentum P μ, then the CM motion is simply a straight line parallel to P μ. However, the
spatial position of the CM relative to the CM system is ambiguously defined, not because it
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may be subject to arbitrary translations (which is always the case, but this is only a geometrical
symmetry) but because definitions are possible which are dynamically different [1–4].

The differences between these definitions are termed dynamical, because they involve
dependence on the internal dynamics of the system. Then, in general, a change in the internal
configuration of a system will inevitably induce a change in the resultant CM.

So far, the different options for the relativistic CM have been formulated only in terms
of the internal angular momentum of the system. However, the analysis of internal dynamics
of rotationally symmetric systems involves not only rotational symmetry but rather the larger
symmetry generated together by both the internal angular momentum and the so-called Runge–
Lenz1 vector [6–10], and this includes also various relativistic systems and models, both non-
quantum [7, 11–14] and quantum [15–17]. But it seems that the possible relation between the
relativistic CM and the Runge–Lenz symmetry was ignored over the years.

The purpose of this paper is to demonstrate, first, that the computation of the relativistic
CM coordinate explicitly involves, at least for two-body systems, the Runge–Lenz vector.
Explicit expressions for relativistic Runge–Lenz vectors were found for single particles in
centrally symmetric potentials (fixed centre) [7, 11], and for couples of particles in the
post-Newtonian approximation [12] or in models with non-realistic but simple-to-handle
interactions [13, 14]. Corresponding expressions for fully relativistic systems with real
interactions are not yet known, but the problem is fully solvable in the post-Newtonian
approximation, in which we compute the CM coordinate for electromagnetic or gravitational
systems. There the CM is indeed found to be dependent, in general, on the internal
configuration of the system via the Newtonian Runge–Lenz vector. Then, introducing the
requirement that the CM coordinate be independent of the internal configuration uniquely
fixes its form. This result is then corroborated for a two-body fully relativistic system of non-
interacting particles. Having fixed the form of the CM coordinate it is shown that it cannot
be canonical. Implications and possible consequences of these results for fully relativistic
systems are then discussed.

2. Internal symmetries and the general form of the spatial CM coordinate

For closed relativistic systems of particles, with conserved total linear momentum P μ and total
angular momentum Jμν , the trajectory in Minkowski spacetime2 of their CM may always be
written as

Xμ(τ) = Rμ + τ · P μ

M
(1)

where M = √−P 2/c is the total mass of the system, Rμ is a constant 4-vector, the spatial
CM coordinate relative to the origin of the CM-frame and τ is the CM proper time, a Lorentz
scalar. Appropriately fixing the zero of τ, Rμ may be assumed orthogonal to P μ without loss
of generality, R · P = 0.

A full and complete definition of the CM coordinate (1) requires separate definition of
Rμ and τ . The definition of the proper-time τ as an observable was recently discussed in
[18, 19]. Here we discuss the spatial part Rμ.

As already mentioned, the determination of Rμ turned out to be ambiguous and different
approaches to the relativistic CM issue have yielded a variety of expressions for Rμ. The

1 This vector should actually be named after the predecessors of Runge and Lenz [5], but for the sake of simplicity
the common name will be used in the following.
2 In the following we consider dynamics described in a Minkowski spacetime with metric tensor gμν =
diag(−c2, 1, 1, 1), μ, ν = 0, 1, 2, 3.
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minimal relativistic Lorentz-covariant generalization of the Newtonian expression, also known
as the centre-of-inertia [2–4], is

Rμ = −JμνPν

M2c2
. (2)

For the general expression it is convenient to introduce a vector Qμ which incorporates all the
differences between the various definitions, so that Rμ becomes

Rμ = −JμνPν

M2c2
+ Qμ, (3)

and discuss its properties. Clearly Q · P = 0, so that Qμ is a spacelike vector, fully defined
in the spatial part of the CM reference frame. Since the translational properties of Rμ are
all contained in the first term −JμνPν/M

2c2 it follows that Qμ is invariant under global
uniform translations and may only depend on the relative positions of the particles. Thus we
conclude that the differences between the various CM definitions are incorporated in different
dependences on the internal dynamics of the system.

In particular, in a two-body system there are six internal degrees of freedom. Four of
them are contained in the total energy and the internal angular momentum vector �� = �r × �p
(�r and �p defined as in equation (4) below). The other two are contained in the Runge–Lenz
vector �K or its generalization which exists for any rotationally symmetric two-body system
[6, 7], and whose existence and constancy is a manifestation of an internal dynamical symmetry
(classically, the Runge–Lenz vector is the generator of the canonical transformations that take
the system from one orbit to another, with the same energy). �Q, as a constant 3-vector
depending only on the relative coordinates of the particles, must then be determined only by
�K and ��.

3. The vector �Q in the post-Newtonian approximation

We now proceed to show, in the post-Newtonian approximation of an electrical or gravitational
two-body system, that the general definition equation (3) of Rμ depends, independently of
Qμ, on the Newtonian Runge–Lenz vector. This, in turn, implies that Rμ depends, in general,
on the internal configuration of the system; and if we expect the CM to be independent of the
internal configuration then this poses a requirement that uniquely determines Qμ in terms of
the Runge–Lenz vector.

The demonstration is simple, based on a procedure first introduced by Dahl [20].
Consider a two-particle system, with masses m1,m2, possible electrical charges e1, e2, spatial
coordinates �x1, �x2 and linear momenta �p1, �p2. We also introduce notations for the total
Newtonian mass Mo = m1 + m2 and the Newtonian reduced mass μo = m1m2/Mo. In the
CM system (defined by �P = �p1 + �p2 = 0, without fixing the origin) we define the internal
canonical variables

�r = �x1 − �x2, �p = �p1 = −�p2. (4)

Dahl’s procedure consists in computing the post-Newtonian Lorentz boost in the CM frame,
starting with the vector

�Ro = m1�x1 + m2�x2

Mo

, (5)

which formally looks like the Newtonian CM, but in the post-Newtonian approximation is
not a constant of the motion. To avoid a possible (false) impression that the procedure and
its consequent results depend on this particular choice of �Ro, we choose to start with a more
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general expression: let η1 and η2 be arbitrary constants, independent of �p, such that η1+η2 = 1,
and let �Ro be defined as

�Ro = η1�x1 + η2�x2. (6)

These definitions allow us to express the particles’ coordinates as

�x1 = �Ro + η2�r, �x2 = �Ro − η1�r. (7)

Using the post-Newtonian velocities [21]

�v1 =
(

1 − p2

2m2
1c

2

) �p
m1

+
κ

2rm1m2c2

[
(1 + m2α) �p +

( �p · �r)
r2

�r
]

,

�v2 = −
(

1 − p2

2m2
2c

2

) �p
m2

− κ

2rm1m2c2

[
(1 + m1α) �p +

( �p · �r)
r2

�r
]

,

(8)

with κ = e1e2 and α = 0 or κ = −Gm1m2 and α = 6/μo for the electrical or gravitational
case, respectively, the time derivative of �Ro is found to be, after some algebra,

d �Ro

dt
= η1�v1 + η2�v2

= μo

(
η1

m1
− η2

m2

)
d�r
dt

+
m1 − m2

2Mom1m2c2

[
p2 �p
μo

+
κ

r
�p +

κ( �p · �r)
r3

�r
]

= d

dt

[
μo

(
η1

m1
− η2

m2

)
�r +

m1 − m2

2μoM2
o c2

( �p · �r) �p
]

. (9)

The virtue of this decomposition is that the coefficient of d�r/dt is independent of �p, while
the other term is independent of the ηas. Passing from second to third row in equation (9)
employed the Newtonian equations of motion, which were sufficient because these expressions
are already of order 1/c2. Integration of equation (9) then yields

�Ro = �Xo + μo

(
η1

m1
− η2

m2

)
�r +

m1 − m2

2μoM2
o c2

( �p · �r) �p, (10)

with �Xo being an arbitrary integration constant.
The post-Newtonian Lorentz boost in the CM frame [21] now becomes, using

equation (7) (Ni = J i0)

�N =
∑

a

(
ma +

p2

2mac2
+

κ

2rc2

)
�xa

= M �Ro +

[
η2m1 − η1m2 +

(
η2

m1
− η1

m2

)
p2

2c2
+

(η2 − η1)κ

2rc2

]
�r, (11)

where

M = Mo +
p2

2μoc2
+

κ

rc2
(12)

is the post-Newtonian total mass in the CM coordinates. Then, substituting �Ro from
equation (10), it turns out that all the ηa-dependent terms cancel, resulting in

�N = M �Xo +
m2 − m1

2μoMoc2

[(
p2 +

μoκ

r

)
�r − ( �p · �r) �p

]
. (13)

The vector in the square brackets is easily recognized as the Runge–Lenz vector of the
corresponding Newtonian system,

�K =
(

p2 +
μoκ

r

)
�r − ( �p · �r) �p = �p × �� +

μoκ

r
�r (14)
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and we finally obtain

�N = M �Xo +
m2 − m1

2μoMoc2
�K. (15)

This is Dahl’s result, and it is evident that it does not depend on the particular choice of the ηa

coefficients in equation (6).
The computation of the CM is now straightforward, since the vector Rμ in equation (3)

has, in the CM system, only spatial components,

�R =
�N

M
+ �Q (16)

so that applying equation (15) it becomes

�R = �Xo +
m2 − m1

2μoM2
o c2

�K + �Q. (17)

�Xo, the integration constant, serves to fix the origin of the CM reference frame. In the
Newtonian limit we simply obtain �R = �Xo and then may make the common choice �Xo = 0.
Here (in the post-Newtonian case) we may again take �Xo = 0, because it is an integration
constant, not a dynamical quantity, but in order to make also �R = 0 the identification

�Q = m1 − m2

2μoM2
o c2

�K (18)

is required.
It should again be emphasized that �Xo is the constant value of �R, while as an observable,

a function of the dynamical variables of the system, �R is given by equation (16): in Newtonian
dynamics any value may be attached to �R without regard to the actual configuration in which
the system is. In particular, even if the total energy and angular momentum are not known,
the same value �R = �Xo may be assumed for all possible configurations. However, the value
of the Runge–Lenz vector, even if constant, depends on the particular configuration (e.g.,
orbits with different eccentricity). Then, if equation (18) is not satisfied, it implies that either
the final value of �R depends on the configuration, or that for any different configuration of
the system the value of �Xo must be adapted to obtain a desired value for �R. Therefore,
equation (18) is necessary to make the determination of �R configuration independent.

The vector �Q is therefore found to be uniquely determined by the Runge–Lenz vector of
the system. It is important to note that the Runge–Lenz vector was not imposed or introduced
arbitrarily in any way into the preceding expressions, but it emerged naturally in expression
equation (15) for the boost. It is interesting to note that although �Q could have been any
linear combination of �K, �K × �� and ��, it is simply proportional to �K alone. We also note
that Duviryak [14] reported a similar shift of the foci of the orbit relative to the assumed CM,
proportional to the Runge–Lenz vector. He, however, considered the CM as being fixed by
equation (2) and did not examine the implication of the shift on the definition of the CM.

4. Determination of �Q for a relativistic pair of non-interacting particles

The post-Newtonian approximation is the simplest context in which we can show some
relativistic behaviour. Since we do not know yet the Runge–Lenz-like vector for fully
relativistic systems with real interactions, let us show how the foregoing procedure works
for two free relativistic particles. The following discussion will also provide an insight
regarding the independence of Dahl’s procedure on the ηa coefficients.
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In the CM system, with momenta and relative coordinates as in equation (4), energies
Ea = √

m2
a + p2 and �Ro defined as in equation (6) (in this section the convention c = 1 is

assumed), the Lorentz boost is

�N =
∑

a

Ea �xa = E1( �Ro + η2�r) + E2( �Ro − η1�r)

= M

[
�Ro +

(
η2

E1

M
− η1

E2

M

)
�r
]

, (19)

where M = E1 + E2 is the total relativistic mass. Since

E1

M
+

E2

M
= 1

let f (p2) be defined so that

E1

M
= η1 + f (p2),

E2

M
= η2 − f (p2)

yielding

f (p2) = E1 − E2

2M
− η1 − η2

2
= E2

1 − E2
2

2M2
− η1 − η2

2

= m2
1 − m2

2

2M2
− η1 − η2

2
. (20)

In the absence of relative motion, �p = 0, f (p2) becomes

f (0) = m2
1 − m2

2

2M2
o

− η1 − η2

2
= μo

(
η2

m2
− η1

m1

)
.

The dependence of f (p2) on the ηa coefficients is therefore only in f (0), so that it may be
decomposed into

f (p2) = m2
1 − m2

2

2

(
1

M2
− 1

M2
o

)
+ f (0) = (m2 − m1)

(
M2 − M2

o

)
2MoM2

+ f (0).

Expressing p2 in terms of the masses,

p2 =
(
M2 − M2

o

)
[M2 − (m1 − m2)

2]

4M2

f (p2) becomes

f (p2) = 2(m2 − m1)p
2

Mo[M2 − (m1 − m2)2]
+ f (0) (21)

and the Lorentz boost is finally obtained:

�N = M[ �Ro + f (p2)�r] = M �Ro + M

{
2(m2 − m1)p

2

Mo[M2 − (m1 − m2)2]
+ f (0)

}
�r. (22)

The particles’ velocities are

�v1 = �p
E1

, �v2 = − �p
E2

,

with the relative velocity

d�r
dt

= �v1 − �v2 = �p
E1

+
�p

E2
= �p

μ
,
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where μ = E1E2/M is the relativistic reduced mass. The time derivative of Ro may be
computed and written as

d �Ro

dt
= η1�v1 + η2�v2 =

(
η1

E2

M
− η2

E1

M

) �p
μ

= −f (p2)
�p
μ

= − d

dt

{
f (0)�r +

2(m2 − m1)

Mo[M2 − (m1 − m2)2]
(�r · �p) �p

}
(23)

taking into account the constancy of �p and M. Integrating equation (23) we obtain

�Ro = �Xo − f (0)�r − 2(m2 − m1)

Mo[M2 − (m1 − m2)2]
(�r · �p) �p (24)

so that combining equation (19) and equation (24) into equation (16) yields

�R = �Xo +
2(m2 − m1)

Mo[M2 − (m1 − m2)2]
[p2�r − (�r · �p) �p] + �Q

= �Xo +
2(m2 − m1)

Mo[M2 − (m1 − m2)2]
�p × �� + �Q. (25)

It is again evident that the arbitrariness of ηa , included only in f (0), disappears from the
final computation of �N or �R, thus verifying the validity of these results. Dahl’s choice for
�Ro in equation (5) with ηa = ma/Mo is just the simplest or most convenient one, for which
f (0) = 0 and the �r-term ia absent from �Ro.

As above, �Q is determined by the requirement that the sum of the last two terms in
equation (25) vanishes, so we finally obtain

�Q = 2(m1 − m2)

Mo[M2 − (m1 − m2)2]
�p × ��. (26)

Comparing with equation (14), �p × �� is the Runge–Lenz vector of the non-interacting couple,
and it is the correct expression in the absence of interactions also in the full relativistic case.
In the non-relativistic limit equation (26) reduces to equation (18), without the interaction
term in the Runge–Lenz vector. Since the coefficient in equation (26) depends only on the
particles’ masses and the total mass, it is expected that the relation

�Q = 2(m1 − m2)

Mo[M2 − (m1 − m2)2]
�K (27)

will be valid for all relativistic systems, including interactions.

5. The non-canonicity of the CM coordinate

A long-standing issue of the relativistic CM coordinate Xμ (position operator in the quantum
case) is that in general [Xμ,Xν] �= 0, where the brackets imply Poisson brackets (PB) or
commutation relations for non-quantum or quantum systems, respectively, unlike what is
expected from a canonical coordinate [1–3, 22]. The only instance in which these self-PB or
commutators vanish is when there is a fully relativistic spin tensor Sμν with O(3, 1) symmetry
[3].

This self-non-commutativity of the CM coordinate was interpreted as Xμ not being a
canonical coordinate, as opposed to the non-relativistic case. The definition of Qμ affects, of
course, the self-commutation of Xμ. In particular it may be shown that a necessary condition
for [Xμ,Xν] = 0 is that

[Qμ,Qν] = − �μν

M2c2
, (28)

7
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where

�μν = −(J μνP λ + J λμP ν + J νλP μ)
Pλ

M2c2
(29)

is the spatial internal angular momentum tensor of the system, dually related to the vector
�� = �r × �p in the CM system. However, with Qμ given by equation (18) we obtain

[Qi,Qj ] = − (m1 − m2)
2(M − Mo)

2μoM4
o c2

�ij �= − �ij

M2c2
(30)

(i, j = 1, 2, 3) so that indeed [Xμ,Xν] �= 0 except for a pair with equal masses. In the
quantum case this result implies that the spatial components of Xμ in the plane defined by �μν

(classical plane of motion) cannot be fixed simultaneously.

6. Discussion

The present paper brings together and combines two subjects which so far were regarded as
completely distinct: the determination of the CM of composite relativistic systems, on the
one hand, and the Runge–Lenz vector on the other hand. From the two cases which were
presented it follows that, unlike all the previous approaches to the relativistic CM issue, the
Runge–Lenz vector naturally emerges and thus plays a major role in the determination of
the relativistic CM. The common view has so far held that the CM coordinate of composite
relativistic systems should be constructed of P μ and Jμν alone [2]; our results, together with
those in [18, 19], challenge this view.

The Runge–Lenz vector is a constant of the motion in general centrally symmetric systems,
depending only on the internal dynamics of the system [5–8]. It generates, together with the
internal angular momentum, SO(4) or SO(3, 1) symmetry groups which contain the internal
rotational symmetry as a subgroup. In classical (non-quantum) systems, knowledge of the
Runge–Lenz vector amounts to having a full solution for the configuration of the system
(details of orbit, etc); in simple quantum systems the Runge–Lenz vector provides a very
elegant means for obtaining the full quantum picture of the system (as in the case of the
hydrogen atom).

Over the years this vector, its generalizations and the symmetries associated with it were
regarded more as a curiosity than as a valuable tool which is capable of providing innovative
results. Their existence was used to illuminate interesting aspects in the systems in which
they were found, but they never provided essentially new information. Here, apparently for
the first time, the Runge–Lenz vector plays an essential role in providing new results.

Our results, together with the various relativistic Runge–Lenz-like vectors mentioned in
section 1, indicate that any discussion of the relativistic CM should take into account the
Runge–Lenz vector and the associated symmetry as part of the internal dynamical symmetries
of the system. Composite relativistic systems have been studied so far only via their Lorentz–
Poincaré symmetry, with the implied internal rotational symmetry. It seems that whatever this
symmetry may tell us has been already used up. In order to really proceed and deepen our
understanding of these systems larger symmetries which are available must be used, and the
generalization of the classical Runge–Lenz symmetry is the natural candidate.

The virtue of the method used here for the computation of the relativistic CM is in the
realization that the Runge–Lenz vector naturally appears in the computation of the Lorentz
boost. Several directions are open for further investigation:

(i) The Newtonian Runge–Lenz vector for 1/r potentials (equation (14)) is of a particularly
simple form, neatly separated into a kinetic part �p× �� and an interaction part. Generalized

8
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Runge–Lenz vectors exist for all central potentials [7], but this structural simplicity is
lost for potentials other than 1/r [9, 10]. Further work, done after the completion of
the present paper, shows that the above procedure may be applied also to the post-
Newtonian extensions of general central potentials [23]. This will be the subject of a
future publication.

(ii) Although the general Runge–Lenz symmetry—SO(4) or SO(3, 1) together with SU(3)

symmetries—may be shown to exist for general rotationally symmetric systems with
arbitrary number of particles [6–8], we know how to construct Runge–Lenz vectors
only for two-body systems. This presents the challenge of generalizing the Runge–Lenz
symmetry also for systems with more than two particles, and again see if the above
procedure works also in this case.

(iii) The ultimate goal is the explicit definition of the CM coordinate for a fully relativistic
system and the consequent separation of its internal dynamics from the CM motion. So
far, no exact analytic solution is known for closed interacting relativistic systems except
for circularly moving charged particles [24, 25]. The Runge–Lenz vector vanishes for
circular motion, and in the absence of a full non-circular solution one might try to consider
applying the above procedure to almost circular orbits [26] for which the Runge–Lenz
vector may be found as first-order correction.

I hope to see some progress in these directions in the near future.
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